
MASTER
T17LE EXISTING COMPUTER APPLICATIONS MAINTAIN OR REDESIGN:

HOW TO DI?CIDE?

AUTHmS~ Linda Brice, ADP-2

9WM~TE0TO December 1-4. lQR1. Faimmnt Hotel. New ~Jrlean~.l.~ui~ian~
Sponfioredbv: CMC XII International Conference on Computer
Performance Evaluation ExistinR Computer Applii.ations.?hilltain
or Redrsign: How to Decide?
(will he published if accepted)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

Existing C’omputerApplications

Maintain or Redesign: How to Decide?

ABSTRACT

Maintainence of large applications programs is an aspect of
performance management that has been largely ignored by those
studies that attempt to bring structure to the software
production environment. Maintenance ;.ri $his paper means:
fixing “bugs”, modifying current design features, adding
enhancements, and porting applications to other computer
systems. It is often difficult to decide whether to maintain or
redesign. One reason for the difficulty is that good models and
methods do not exist for differentiating between those programs
that should be maintained and those that should be redesigned.

This enigma is illustrated by the description of a larye
application case study. The application was monitoued for
maintenance effort, thereby providing some insight into the
reaesign/mairtain decision. Those tools which currently exist
for the collection and measurement of performance data are
highlighted. Suggestions are then made for yet other categories
of data, difficult to collect and measure, yet. ultimately
necessary for the es&ablishment of accurate predictions ab’:ut
the value of maintair,ingversus the value of redesignl;:g.

Finally, it is concluded that this aspect of performance
management deserve~ increased attention in order to establish
‘-~+te:guidelines with which to aid management fn making the
necessary but difficult decisio:): maintain or redesign.

-1-

[

.. . ,---------.“-lM6t,Am*” . . .

. J

INTRODUCTION

There is no longer any doubt that some form(s) of structured
specification, designf and implementation will be used to
control major software projects of the eighties and beyond. The
value to be gained from these approaches is well documented
[1]. Unfortunately, many data processing departments will
derive little benefit from these advances for years to come
since most of the DP software budget is spent maintaining code
that was not designed with these techniques.

How does management decide when to invest precious resources in
the redesign of an existing, working application? Put another
way, how do you quantify change that may result from cleaner,
better implementation? Quantifiable costs associated with an
application include: computer resources utilized by the
application, programmer staff time plus computer resource costs
expended to maintain the application, and associated user time
spent trying to learn and to use the end product. Other costs
which are harder to quantify include: net effects of
frustration among users and maintainers of the existing
application, possible increases in user productivity, overall
improvements in operations resource consumption, and those
expenditures associated with redesign and re-implementation.

Several semi-formal systems of rules have been developed with
the goal of avoiding poor designs and implementations. Further,
a type of folk wisdom has evolved that allows applications to be
classified as generally good or bad, often based upon their
resource consumption and/or the quality of the user interface.
Tools exist [2, 3, 4, 5] for quantifying expected improvements
in resource consumption resulting from specific design changes.
While some recent studies have showrlthe value of the concept of
software engineering, most design methods ignore performance,
thus devaluating these tools. Furthermore, the actual
maintenance costs are often much greater than the total computer
costs associated with usc of an application.

Less attention has been focused on quantifying just how costly
an application is by utilizing as a base the human time invested
in maintainencel an activity that consumes large fractions of a
typical budget lt is necessary but insufficient to know how
many man hours per month are invested in maintainence of an
application. It is also necessary, but insut’ficientto
understand why and how the maintainence was done. Other metrics
are needed if good models are to be produced that allow a
quantification of the benefits that might accrue from a complete
redesign of the sppi.?.cation.

-2-

In what follows, the performance metrics which were developed
for evaluating an applications maintenance effort ar~
described. The case study is a beginning towards providing
management with decision making Lools, but it is not totally
adequate.

presented here is the following:

● sample values of data collected for in-house maintenance
effort,

● rewrite payoff estimates using only collected data,

● other, known approaches for collecting additional data which
could improve predictions,

● suggestions for data which, given ideas for collection,
would enhance the metrics necessary to parametrize models.

-3-

CASE STUDY

Maintenance work can be divided among three categories: fixing
“bugs”, adding minor enhancements or altering features, and
developing new features for an existing system. The latter of
these three categories may include, for example, a new output
report which must rely on existing subroutines and file
structures.

Described he? detail is the analysis of all maintenal]cework
done for a 1 .ge application that was ported (straight
conversion) ~rom a CDC 6600 to a Hewlett Packard 3000
mini-computer. The data was collected over a 13 month period.
There are approximately 120 programs and subroutines written
primarily in the Fortran language (with a few COBOL codes),
consisting of approximately 43,000 lines of code. The
application is used interactively by 80-100 users. Batch
production cycle output is distributed to about 2,000 users.
Nearly 140mb of disk storage is consumed for program source,
binaries and data files. The basic function of the application
is to provide a subset of users with a method of interactively
entering budget forecast data and iterating that data, and
subsequently to provide all users with ;~ard-copyreports
depicting the current status of forecasts versus actual costs to
date.

The maintenance programming effort is subdivided according to
three main categories: pure culrective maintenance (“fixes” to
performance or implementation failures), enhancententsor
optimization (changes in the processing environment), and
development or extension (addition of new featu~e~~for increased
performance). Table 1 reflects the number of person hours of
effort expended for each of these three categories,, While
“development” effort is the largest of the categories, it should
be noted that 85% of the development was expended on only two
requests: documentation of the system and a ~eries of new
output reports. The largest number of changes fell into the
“enhancement” category, as illustrated in Figure 1. Service
Request numbers, the documentation form used to log ohanqes, Jie
not chronological in this figure, but represent grouping of
effort. For example, in the curve labeled “EN for enhancernunt,
the x-axis point labeled “2” indicates that one enhancement.
request required 150 hours of effort. On the enhancemi?ntrurve,
the x-axis points labeled “6”, “7”, “8” and “9” indicate that
each of four changes required 50 hours of effort. Simila:ly, on
the “development” curve, it is shown that only one reql\[\’st(the
one for new output) required 1~000 hours. Figure 1 shows that
the number of development changes was five, the number of
enhancement changes was 40, and the number of maintenance

-4-

changes was 25P totaling 70 service requests. Figure 2 makes no
distinction among development, enhancement or maintenance, but
shows, as one curve, that the majority of changes were small in
terms of effort hours. For example, 26 changes required 10 or
fewer than 10 hours, 15 changes required 20 or fewer than 20
hours, etc. Compared to development, where one change took over
l,GOO hours, maintenance and enhancement changes requiring less
than 125 hours numbered 65. It can be infeLred from this data
that the “quick fix” or “patch” consumed over one-half of all
effort expended during the time pe:iod. That is, enhancement
and maintenance consumed 3,100 hours while development consumed
2,500 hours.

The two easily quantifiable costs associated with an application
are computer resources for use and maintenance, and personnel
resources for maintenance. Computer costs in this case study
are fixed - approximately $5,900 per month for lease price plus
approximately $1,100 per month for hardware maintenance, the
total approximating $7,000 per month. The total number of
person hours expended in maintaining the operation over the 13
month period is 5,639 - when overhead factors are added, the
figure escalates to 7,933, or an effective average of 3.8 full
time professional employees. Average Ccst per eIIIplOyee,

including salary, overhead costs and fringe benefits exceeds
$100,000 per year or $8,333 per month.

Total manpower cost is then calculated in Equation (l):

m “ ?Je * Na * A (1)

TmO~ 3.8 * 13 * $8,333
Tm - $~11,650
where lln= total manpower cost

Ne = number of employees
Na = number of months elapsed
A = Averdge monthly cost per employee

Equation (2) gives total computer costs.

Tc. (pl+pm)*N (2)

T~r= ($5,900 + $1,1OO) * 13
Tc = $91,000
where Tc = total computer co~t

P1 = computer lease price
Pm = computer hardwark maintenance price
N = number of months elapsed.

Comparison of computer coats of $91,000 to personnel costs of
$411,650 points cut that, in at leaut some applications, the
cane ot maintaining and ucaing a system is more important than
machine resource utilization.

-5-

,..

Note that only programmer effort was included in these
calculations. Management time, an even higher cost, was not
considered, nor was product~.onoperations staff time. It is not
known how many hours of effort were expended by users of the
application, a metric which would be useful in the redesign
decision. 3ased on informal observation, the user interface
could be improved? but that kind of time-consuming survey has
no< yet been conducted in this case study.

Those who maintain the application complain that changes are
difficult to make and test. All agree that a rewrite is
n~cessary. Yet the application is “working”, thus creating tne
need to prove to management that a redesign using modern methods
would result in a smaller maintenance effort and improved
overall costs. Quantifying a “]~ayoff”to be gained from a
rewrite is the key. The followlng three figures are an attempt
tc use the collected data to indicate payoff possibilities.

In strictly monetary terms, the current and anticipated
expenditures of maintenance, both staff and hardware? can be
plotted as a function of time. In figures 3, 4, and 5:

T1 = t * (c +P)

where T1 = total expenditures without rewrite
t = elapse time, in months
C = computer costs, defined as constant.

$7,000/month
P = personnel costs
.Ne*A
= 3.8 * $8,333
“ $31,000
where Ne = number of employees

A = average monthly cost per person

FiguCe 3 is a realistic estimate, assuming that the application
can be rewritten by three people in a nine-month period, Figure
4 is An optimistic estimate, assuminq that the application can
be rewr]tten by two people in a six-month period. Figure 5 is
pessimistic, assuming it would take four people one year to
accomplish a rewrite. Figures 3, 4, and 5 use the line T2 to
indicate redesign nests. In all figure~ the following
assumptions are standard:

1) computer resource costs will remain constant,
2) following a rewrite, maintenance programmer costs will

be significantly reduced (it will take only two people
to support the maintenance effort, instead of the
current 3.8),

3) the maintenance, enhancement ano development ,load
(number of service requests) will ~emain constant,

-6-

Costs, given a rewrite is calculated:

T2=t*(c+p/p)+ll
where t = elapse time, in months

c = computer costs, defined as rmnstant
$7,000/month

P= personnel costs
.Ne*A
= 3,8 * $8,333
= $31,000
where Ne = number of employees

A = average monthly cost per person
p = reduction factor (assume 1.9)
R = rewrite costs

= Nr *A * t
where Nr = number of employees

required for rewrite
A = average monthly cost per

person
t = elapse time, in months,

for rewrite.

In every case, costs are higher during the rewrite period when
the project utilizes additional staff.

Also, in every case, costs plummet following completion of the
rewrite, and the payoff period begins some time after the
rewrite. Figures 3 & 4 show the savings effected - it can be
seen that $120,000 and $245,00d are the savings by the 24th
month for the realistic and optimistic cases: respectively.
Payoff for the pessimistic case will not begin until sometime
after the 12th month following rewrite. The total savings is
the difference of T1 - T2. In figure 3 (realistic), the payoff
begins six months after the rewrite, but in Figure 4
(optimistic) the payoff is shown to begin one short month after
the rewrite.

These figures are a good indication of the positive effects of a
rewrite, but they are incomplete without incorporating another
needed metric - user interface. If user costs were added, T1
would shift upward, and T2 would shift upward, at least until
the time of rewrite completion. If, however, there was some
mechanism for predicting impro~ed ease of use after rewrite (and
therefore lower user costs), it cculd possibly be shown that T2
would dramatically shift downward after rewrite, creating
greater overall savings.

Another metric nseded to accurately forecast payoff
possibilities is the cost of re-implementation. Guessing at the
number of people and the time required for the project is not a
good tool. The estimates used in chi~ case study were deemed
reasonable by all who were associated with the project, yet
there is no guarantee that the application can be recreated and
improved on a predetermined schedule.

-7-

OTHER APPROACHES

It has been said that “Maintenance-orienteddesign constraints
are essential for continued reliability and correctness in a
changing environment. The pressure for change results from the
economic advantages of new hardware and the service advantages
of new function. Since these advantages develop frequently,
reflecting the rate of technological improvement and new
applications, the pressure for change is persistent. Without
the support of maintainability in such an environment,
reliability and correctness are fragile properties which can be
quickly lost to either error or obsolescence. Therefore, in a
changing environment, maintenance-oriented design constraints
become as important as those of presently-required function.”
[6]

Some directly measurable maintainability factors have been
defined as:

● problem recognition time,

● administrative Le.laytime~

● maintenance tools collection time,

● problem analysis time,

● change specification timel

● active correction time,

● local functional correctness test time,

9 global correctness test time,

● independent change - audit time,

● recovery time or correction implementation time [7].

In the case study, the above ten factors were measured as one,
although each of the ten could have been measured
indeper,dentJy. What was not measured, due in part to lack of
tools, were the potentially highest cost savers: possible
increase in user productivity and an accurate figure for
decreased maintenance cost after rewrite, Decreased maintenance
costs were merely guesses, while user interface was left
conctant due to absence of data. For example, if the programs
were redesigned with better user features, the enhancement load
(number of service requests) could be expected to drop sharply.

-8-

While maintenance for the application is expected to improve
following a rewrite, publication of an accurate expectation
requires both additional data and additional meas~rement tools
for projections.

Additional data might include:

a distribution of user time spent exercising each intera~:tive
feature,

● distributio~~ of user time spent exercising each batch report
feature,

● prioritization of the usefulness of the features by the
users of the application (frequency of use is often not
indicative of importance - many reports produced only at
month end carry heavy significance) ,

● prioritization of future enhancements desired by users.

-9-

UNOBTAINABLE (?; DATA

Projections which, made accurately, would aid in the
maintain]redesign decision might include:

● cost to redesign and re-implement,

● resource consumption of the rewritten version of the
application,

.
@ improvements in interactive user productivity,

● improvements in batch report user productivity,

● improvements in operations staff application use,

● improvements in production control.

-1o-

CONCLUSION

Applications which are difficult to maintain or use are often
considered candidates for redesign, even though they exist in
working status. Many DP shops are handicapped by too few
available methods for deciding when an application should be
left in maintenance mode with known, fixed costs, and when it
should be rewritten. Some advantages of a rewrite are:

● improved user features,

● improved maintainability due to structured specification,
design and implementation,

● improved user and maintenance costs.

Redesigns are expensive as most applications must continue to
serve the user with a maintenance staff during the rewrite
period. Management requires tools for estimating the cost of
redesign and plotting it against the potential cost savings of a
new version.

Maintenance effort and computer resource consumption are easily
quantified and were done so in the case study. Other metrics
such as frequency of the use of an application feature by users
and user satisfaction survey could be used in the study, yet
they still would not provide enough information for an
intelligent decision. Performance management aspects which need
to be ~ddre:~sed in order to aid in the maintain/redesign
decision are:

● how to accurately estimate programmer time associated with
redesign,

● how to accurately predict resource consumption after rewrite
if the end product remains the same, and if it does not,

● how to accurately estimate user productivity following
rewrite,

s how to accllrately estimate maintenance effort required for a
new version.

Until each of these metrics are considered in the comparison of
maintenance costs versus redesign costs, a proper decision
cannot be clear.

-11-

2.5K
hours
total

1.8K

hours
tbtlll

1.3K ,
hours ‘
total

o

1
I

r
i

1Ii
i
i
I

i
I

i

~

i

I

1

,

~

~

I
I

II
iII
I — ,—

Categories of Effort

-12-

k-
.%

A.

5&.

IJ
i
i

1

i

I

I
~

I
I

I
It!.“

k

!
11

4(JU I\iW(J‘“ I
k

\
!,
\

\ I!lMJ

\ ‘;
I Eni

I
I

.

.

.

.

\/---- ----

~“—-” --+.-
3062 12!J 250

ConccnLraLion of changes by
number of effort hours

~—---’~—--------. --’-- \
‘--”-” -- 1“

375

Number of

-.._.. _.+___ b
500 Loa

man hours required

;

I

$9129

$B74-

SB36-

S796L

5760-

S722-

S6B4-

$641t-

s69E-

s570-

S532-

$4~4_

$456-

s4l8-

F~gure 3

Assumption: Rewrite takes 3 people 9 mcnths

/

/

./
/

,/” ./ A 792
\\ i? .=.

,/”’ /-’..
/

/

,.--’
/

, /
,/

Completion /
/“

of rewrite ;“7 ‘“”’

5660
./’”

-. Beginning
./”’ :’i

of payoff

/’
\

./’ /~
161 ~;

./
./

//

s3e’o-
,,/

%%
$342-

.“

.’
s304- ,,,

$266+
/

/,’
,

s228-

S190~ ,’ /’”

$152- ‘ ;’

Time ln months (t)

T1 “ Current cost of mafnf

T2 “ Rewrite cost plus ma

●rmnce

nttnance cost

-15-

Figure 4

Assumption: Reurlte takes 2 people 6 months

$8744

$8360

$79+

$760+
.

,.

$7224 /’
$684~

S6461

$608:

S5704

$532+

$494*

S456+

S418-

S380-

S342;

s304-

S2667

$228+

$1901

/’

. .

/

667
,.-,. .i,.

,.“
,/ /“” ““
,

<\,. “’ /
/’

,“ /“”.,‘ // ,/...
.,/A

**/’”
Comp;~[ion ,,/ ,0-”
of rewrite ,/

/

,.”

Y

327
,/ /’

,/’ <65
/’

%% /“” ““’ Beglnnlng of payoff
,

$152
+

,/

$114 ..”.
T$761-,“~..‘

Time In nmnths (t)

T, . current cost of ~lntena~ce

T2 = Rewrite cost plus Nint@nanC. Cost

-16-

I

I
Figure 5

I
Assumption: Rewrite takes 4 people 12 months

S938~

$950~

$912+

$8741

$936-

$798=

S760+

S722=

$684-

$646-

Completion
of rewrite

/’”

/-

e55

/\/

\ ,,

/’
/,/

,/

/

707 ./

/

967

912

s608- / /

s570- /’
/

S532- i
S4~~_

S456-

S418- /

Time In months (t)

T1 ● Current cost of maintenance

T2 ■ Rewrite cost plus malrkenance cost

-17-

1. L,leinelKarlt “Selected Annotated Bibliography on Software
Engineering”, ACM SIGSOFT, Software Engineering Notes Vol.
3, No. 1, January 1978.

2. C. U. Smith, J. C. Browne, ‘Aspects Of Software Design
Analysis: Concurrency and Blocking”, Proc. Symposium on
Computer Performance, Modeling, Measurement and Evaluation,
Toronto, Ontario, Canada, May 1980.

3. C. U. Smith, J. C. Browne, “Performance Specifications and
Analysis of Software Designs”, Proc. Conference on
Simulation, Measurement and Modeling of Computer Systems,
Boulder, August 1979.

4. C. U. Smith, J. C. Browne, “Modeling Software Systems for
Performance Predictions”, Proc. Computer Measurement Group
X, Dallas, December 1979.

5. T. J. Gilkey, F. R. White, antiT. L. Booth, “Performance
Analy~is as a Software Design Tool”, Proc, COMPSAC77, IEEE
Computer Society, November 1977.

6. D. Gelperin, “Testing Maintainability,”, ACMSIGSOFT,
Software Engineering Notes, Vol. 4, No. 2, April 1979.

7. T. Gibb, “A Comment on ‘The Definition of Maintainability’”,
ACM SIGSOFT, Software Engineering Notes, Vol. 4, NO. 3, July
1979.

